Dagger Traced Symmetric Monoidal Categories and Reversible Programming

William J. Bowman, Roshan P. James, Amr Sabry

27th June, 2011

Outline

• Goal: Teach you the language Π^o and show you some example programs in 15mins.

We will skip much of the category theory. (Paper has details).

Introduction

• Π^o is reversible by design – all expressible programs are reversible.

Does not start with an irreversible model and then "add history."

Has a very simple definition in terms of isomorphisms between types.

Intuitions from arithmetic

- We know various equalities from arithmetic:
 - ▶ n + 0 = n
 - $\rightarrow n+m=m+n$
 - $n \times m = m \times n$
 - $n \times (m+l) = n \times m + n \times l$
 - $\begin{array}{ccc}
 & \underline{n=m} & \underline{m=l} \\
 & \underline{n=l}
 \end{array}$
 - $\begin{array}{c}
 n+m=l+m \\
 n=l
 \end{array}$

Intuitions from arithmetic

- We know various equalities from arithmetic:
 - ▶ n + 0 = n
 - \triangleright n+m=m+n
 - $n \times m = m \times n$
 - $n \times (m+1) = n \times m + n \times 1$
 - $\begin{array}{c}
 n = m \quad m = I \\
 n = I
 \end{array}$
 - $\frac{n+m=l+m}{n=l}$
- We build a language by treating these equalities as isomorphisms between types.

Intuitions from arithmetic

- We know various equalities from arithmetic:
 - ▶ n + 0 = n
 - \rightarrow n+m=m+n
 - \triangleright $n \times m = m \times n$
 - $ightharpoonup n \times (m+1) = n \times m + n \times 1$
 - $\begin{array}{c}
 n = m \quad m = I \\
 n = I
 \end{array}$
 - $\frac{n+m=l+m}{n=l}$
- We build a language by treating these equalities as isomorphisms between types.
- We will give them a computational interpretation.

Type Isomorphisms

Sound and Complete Isomorphisms:

Type Isomorphisms, Recursive Types and Trace

base types, b ::= 0 | 1 | b + b | b × b | x |
$$\mu$$
x.b values, v ::= () | left v | right v | (v, v) | $\langle v \rangle$

$$\mu$$
x.b \leftrightarrow b[μ x.b/x] isorecursive types

$$0 + b \leftrightarrow b \qquad \qquad identity for + commutativity for + b_1 + (b_2 + b_3) \leftrightarrow (b_1 + b_2) + b_3 \qquad isorecursive types$$

$$1 \times b \leftrightarrow b \qquad \qquad identity for + commutativity for + associativity for + associativity for × b_1 × (b_2 × b_3) \leftrightarrow (b_1 × b_2) × b_3 \qquad identity for × commutativity for × b_1 × (b_2 × b_3) \leftrightarrow (b_1 × b_2) × b_3 \qquad associativity for × associativity for ×

$$0 \times b \leftrightarrow 0 \qquad \qquad distribute over 0$$

$$(b_1 + b_2) \times b_3 \leftrightarrow (b_1 \times b_3) + (b_2 \times b_3) \qquad distribute over + b_3$$

$$\frac{b_1 \leftrightarrow b_3}{b_2 \leftrightarrow b_4} \qquad \frac{b_1 \leftrightarrow b_2}{b_2 \leftrightarrow b_1} \qquad \frac{b_1 \leftrightarrow b_2}{b_1 \leftrightarrow b_3}$$

$$\frac{b_1 \leftrightarrow b_3}{(b_1 + b_2) \leftrightarrow (b_3 + b_4)} \qquad \frac{b_1 \leftrightarrow b_3}{(b_1 \times b_2) \leftrightarrow (b_3 \times b_4)} \qquad \frac{b_1 + b_2 \leftrightarrow b_1 + b_3}{b_2 \leftrightarrow b_3}$$$$

Witnesses for Type Isomorphisms

Primitive operators and their composition:

The language ∏°

A programming language emerges:

Syntax

```
base types, b ::= 0 \mid 1 \mid b + b \mid b \times b \mid x \mid \mu x.b

values, v ::= () \mid left \ v \mid right \ v \mid (v, v) \mid \langle v \rangle

isomorphisms, iso ::= \times_{+} \mid \gtrless_{+} \mid \lessgtr_{+} \mid \geqslant_{+} \mid \gtrless_{+}

\mid \times_{\times} \mid \gtrless_{\times} \mid \lessgtr_{\times} \mid \geqslant_{\times} \mid \gtrless_{\times}

\mid \prec_{0} \mid \succ_{0} \mid \prec \mid \succ \mid id \mid fold \mid unfold

combinators, c ::= iso | sym c | c • c | c \otimes c | c \oplus c | trace c
```

- Π^o is a dagger symmetric monoidal category with a trace over the monoid (+,0).
- In practice, we use "wiring diagrams" to program : values are like particles moving through a circuit.

Operational semantics: $c v_1 \mapsto v_2$

Programs c are applied to values v, thus evaluation is denoted by $c v_1 \mapsto v_2$ transitions.

Associativity

$$\begin{array}{lll} \geqslant_{\times} : & b_1 \times (b_2 \times b_3) & \leftrightarrow & (b_1 \times b_2) \times b_3 \\ \geqslant_{\times} & (v_1, (v_2, v_3)) & \mapsto & ((v_1, v_2), v_3) \end{array}$$

Distribution

Folding

fold :
$$b[\mu x.b/x] \leftrightarrow \mu x.b$$

fold $v \mapsto \langle v \rangle$

Traces give us Iteration

Categorical "trace" over the monoid (+,0) – sometimes called a "Cancellation Law."

$$\frac{c:b_1+b_2\leftrightarrow b_1+b_3}{\textit{trace }c:b_2\leftrightarrow b_3}$$

Traces give us Iteration

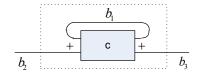
Categorical "trace" over the monoid (+,0) – sometimes called a "Cancellation Law."

$$\frac{c:b_1+b_2\leftrightarrow b_1+b_3}{\textit{trace }c:b_2\leftrightarrow b_3}$$

Traces give us Iteration

Categorical "trace" over the monoid (+,0) – sometimes called a "Cancellation Law."

$$\frac{c:b_1+b_2\leftrightarrow b_1+b_3}{trace\ c:b_2\leftrightarrow b_3}$$



The iterative interpretation satisfies the coherence conditions for categorical traces.

Programming in Π^o : Booleans, not

- bool = 1 + 1
- true = left ()
 false = right ()

Programming in Π^o : Booleans, not

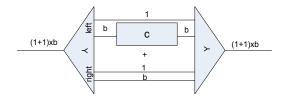
- bool = 1 + 1
- true = left () false = right()
- not : bool ↔ bool $not = \times_{+}$
- Verify the behavior: not true \mapsto^* false not false \mapsto^* true

11 / 15

Conditionals, Toffoli ...

One armed-if:

 $if_c : bool \times b \leftrightarrow bool \times b$ $if_c (flag, b) = if flag then (flag, c(b)) else (flag, b)$

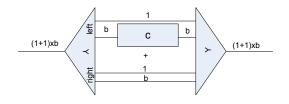


$$if_c = \langle \bullet ((id \otimes c) \oplus id) \bullet \rangle$$

Conditionals, Toffoli ...

One armed-if:

 $if_c: bool \times b \leftrightarrow bool \times b$ if_c (flag, b) = if flag then (flag, c(b)) else (flag, b)



$$if_c = \langle \bullet ((id \otimes c) \oplus id) \bullet \rangle$$

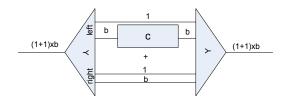
• cnot : bool × bool → bool × bool $cnot = if_{not}$

12 / 15

Conditionals, Toffoli ...

One armed-if:

 $if_c : bool \times b \leftrightarrow bool \times b$ $if_c (flag, b) = if flag then (flag, c(b)) else (flag, b)$



$$if_c = \langle \bullet ((id \otimes c) \oplus id) \bullet \rangle$$

- cnot : bool × bool → bool × bool cnot = if_{not}
- toffoli : bool × (bool × bool) ↔ bool × (bool × bool) toffoli = if_{cnot}

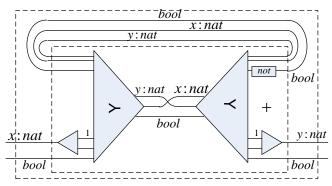
Iteration over numbers

- $nat = \mu x.1 + x$
- $0 = \langle left() \rangle, 1 = \langle right(0) \rangle, 2 = \langle right(1) \rangle...$
- fold : 1 + nat ↔ nat : unfold

Iteration over numbers

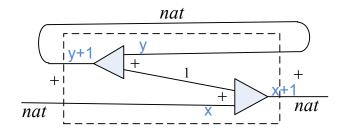
- $nat = \mu x.1 + x$
- $0 = \langle left() \rangle, 1 = \langle right(0) \rangle, 2 = \langle right(1) \rangle...$
- fold : $1 + nat \leftrightarrow nat$: unfold

We can construct a "for" loop:



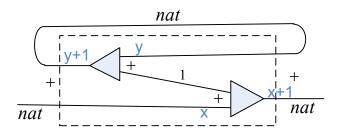
Non-termination and inc: nat ↔ nat

- $nat = \mu x.1 + x$
- $0 = \langle left() \rangle, 1 = \langle right(0) \rangle, 2 = \langle right(1) \rangle...$
- $fold: 1 + nat \leftrightarrow nat: unfold$



Non-termination and inc : nat \leftrightarrow nat

- $nat = \mu x.1 + x$
- $0 = \langle left() \rangle, 1 = \langle right(0) \rangle, 2 = \langle right(1) \rangle...$
- fold : $1 + nat \leftrightarrow nat$: unfold



inc
$$n \mapsto (n+1)$$
 inc⁻¹ $(n+1) \mapsto n$
inc⁻¹ $0 \mapsto undefined$

Π^o can express infinite loops.

Summary

Introduced Π^o.

- The code accompanying the paper has many examples.
 - Factorial
 - Operations on lists.